Performance Evaluation of CMN for Mel-LPC based Speech Recognition in Different Noisy Environments
نویسندگان
چکیده
This study is intended to develop a noise robust distributed speech recognizer for real-world applications by employing Cepstral Mean Normalization (CMN) for robust feature extraction. The main focus of the work is to cope with different noisy environments. To realize this objective, Mel-LP based speech analysis has been used in speech coding on the linear frequency scale by applying a first-order all-pass filter instead of a unit delay. Mismatch between training and test phases is reduced through robust feature extraction by applying CMN on Mel-LP cepstral coefficients as an effort to reduce additive noise and channel distortion. The performance of the proposed system has been evaluated on test set A of Aurora-2 database which is a subset of TIDigits database contaminated by additive noises and channel effects. The experiment is conducted on four different noisy environments and the baseline
منابع مشابه
Performance Evaluation of Blind Equalization for Mel-LPC based Speech Recognition under Different Noisy Conditions
This study is aimed to develop a noise robust distributed speech recognizer (DSR) for real-world applications by employing Blind Equalization (BEQ) for robust feature extraction. The main focus of the work is to cope with different noisy environments in recognition phase. To realize this objective, Mel-LP based speech analysis has been used in speech coding on the linear frequency scale by appl...
متن کاملMfcc and Cmn Based Speaker Recognition in Noisy Environment
The performance of automatic speaker recognition (ASR) system degrades drastically in the presence of noise and other distortions, especially when there is a noise level mismatch between the training and testing environments. This paper explores the problem of speaker recognition in noisy conditions, assuming that speech signals are corrupted by noise. A major problem of most speaker recognitio...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملAn Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition
Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012